

Syllabus for Ph.D. (Department of Mathematics and Statistics) Entrance	
Exam Paper -H	
UNIT-1	Matrix Algebra
Rank of a Matrix, Linear dependence. Solutions of Linear Systems: Existence and Uniqueness.	
Eigen Values, Eigen Vectors, Properties of Eigen Values and Eigen Vectors, Cayley-Hamilton	
Theorem. Diagonalization of a Matrix, Power of a Matrix, Diagonalization by Orthogonal	
Transformation, Quadratic Forms.	
UNIT-2	Linear algebra
Vector spaces over fields	s, subspaces, bases and dimension. Systems of linear equations,
matrices, rank, Gaussian elimination. Linear transformations, representation of linear	
transformations by matrices, rank-nullity theorem, duality and transpose. Determinants,	
Laplace expansions, cofactors, adjoint, Cramer's rule.	
UNIT-3	Differential Equations
ODE: General solution of homogeneous equations, non-homogeneous equations, Wronskian,	
method of variation of parameters.	
PDE: Linear and quasilinear first order partial differential equations, method of characteristics;	
second order linear equations in two variables and their classification.	
UNIT-4	Numerical Methods
Bisection method, fixed-point iteration, Newton's method. Error analysis for Iterative Methods.	
Computing roots of polynomials. Interpolation: Lagrange Polynomial. Divided Differences.	
Numerical differentiation; numerical integration: Trapezoidal and Simpson rules; numerical	
solution of systems of linear equations: direct methods (Gauss elimination, LU decomposition);	
iterative methods (Jacobi and Gauss-Seidel); numerical solution of ordinary differential	
equations: initial value p	roblems: Euler's method, Runge-Kutta methods of order 2.
UNIT-5	Statistics and Probability Theory
Probability, conditional probability, independent events, total probability and Baye's theorem.	
Random Variable, Probability density function, distribution function, mathematical expectation,	
variance, Discrete Distributions -Binomial, Poisson, Continuous Distribution - Normal	
distribution	
References:	
1. "Higher Engineering Mathematics" by Grewal B S	
2. "Advanced Engineering Mathematics" by Erwin Kreyszig	
3. "Advanced Engineering Mathematics" by Peter V O'Neil	
4. "Numerical methods" by R.K.Jain and S.R.K. lyengar	