

| Syllabus for Ph.D. (Computer Engineering) Entrance Exam Paper -II                                     |                                       |
|-------------------------------------------------------------------------------------------------------|---------------------------------------|
| UNIT-1                                                                                                | Engineering Mathematics               |
| Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial orders |                                       |
| and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring. Combinatorics:               |                                       |
| counting, recurrence relations, generating functions.                                                 |                                       |
| Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and eigenvectors,     |                                       |
| LU decomposition                                                                                      |                                       |
| Probability: Random variables. Uniform, normal, exponential, poisson and binomial                     |                                       |
| distributions. Mean, median, mode and standard deviation. Conditional probability and Bayes           |                                       |
| theorem.                                                                                              |                                       |
| UNIT-2                                                                                                | Programming and Data Structures       |
| Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees,        |                                       |
| binary heaps, graphs.                                                                                 |                                       |
| Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design        |                                       |
| techniques: greedy, dynamic programming and divide-and-conquer. Graph traversals, minimum             |                                       |
| spanning trees, shortest paths                                                                        |                                       |
| UNIT-3                                                                                                | <b>Operating System and Databases</b> |
| System calls, processes, threads, inter-process communication, concurrency and synchronization.       |                                       |
| Deadlock. CPU and I/O scheduling. Memory management and virtual memory. File systems.                 |                                       |
| ER-model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints,           |                                       |
| normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency        |                                       |
| control.                                                                                              |                                       |
| UNIT-4                                                                                                | Computer Networks                     |
| Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual            |                                       |
| circuit switching; Data link layer: framing, error detection, Medium Access Control, Ethernet         |                                       |
| bridging; Routing protocols: shortest path, flooding, distance vector and link state routing;         |                                       |
| Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP,            |                                       |
| DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and                     |                                       |
| congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP,             |                                       |
| Email.                                                                                                |                                       |
| UNIT-5                                                                                                | Cyber Security                        |
| Information Security fundamentals, Elements of Information Security, Network Security, Cyber          |                                       |
| Laws, Physical Security, endpoint security, database security, wireless security, Application         |                                       |
| security.                                                                                             |                                       |

## **References:**

- 1. Thomas H. Cormen. Introduction to Algorithms
- 2. Peter Linz. An Introduction to Formal Languages and Automata
- 3. William Stallings. Computer Organization and Architecture
- 4. Galvin. Operating System Concepts
- 5. Andrew S. Tanenbaum and David J. Wetherall. Computer Networks
- 6. Fourozon. Networks by Fourozon
- 7. Henry Korth. Database System Concepts
- 8. Kenneth H Rosen. Discrete Mathematics and its Applications
- 9. Morris Mano. Logic and Computer Design Fundamentals